{ "cells": [ { "cell_type": "markdown", "id": "0", "metadata": {}, "source": [ "# User-defined functions: summarizing noise data\n", "\n", "This example works with a [model of sound levels for the United States](https://www.nps.gov/subjects/sound/soundmap.htm) produced by the US National Park Service. We want to compute the average noise level for each municipality in Hawaii, but the standard `mean` operation provided by exactextract is not appropriate for the logarithmic [decibel](https://en.wikipedia.org/wiki/Decibel) scale used for sound levels.\n", "\n", "To avoid working with large data files, we use the sound level grid provided for Hawaii, along with the [TIGER shapefile](https://www2.census.gov/geo/tiger/TIGER2023/COUSUB/) of 2023 municipal boundaries (\"county subdivisions\") published by the US Census Bureau:" ] }, { "cell_type": "code", "execution_count": null, "id": "1", "metadata": {}, "outputs": [], "source": [ "sound_fname = 'hawaii/HI_L50dBA_sumDay_exi.tif'\n", "municipalities_fname = 'hawaii/tl_2023_15_cousub.zip'" ] }, { "cell_type": "markdown", "id": "2", "metadata": {}, "source": [ "The sound boundaries are published in UTM 4N (meters), while the municipal boundaries use NAD 1983 geographic coordinates. Rather than pass the filenames to `exact_extract`, we will first load the datasets and reproject the municipal boundaries to the UTM coordinate system used by the sound grid." ] }, { "cell_type": "code", "execution_count": null, "id": "3", "metadata": {}, "outputs": [], "source": [ "from exactextract import exact_extract\n", "from matplotlib import pyplot\n", "import rasterio\n", "import rasterio.plot\n", "import geopandas as gpd\n", "\n", "sound_ds = rasterio.open(sound_fname)\n", "municipalities = gpd.read_file(municipalities_fname).to_crs(sound_ds.crs)\n", "\n", "fig, ax = pyplot.subplots()\n", "ax.set_xlim([0.3e6, 1.0e6])\n", "ax.set_ylim([2.0e6, 2.5e6])\n", "\n", "rasterio.plot.show(sound_ds, ax=ax)\n", "municipalities.plot(ax=ax, facecolor='none', edgecolor='black', linewidth=0.2)" ] }, { "cell_type": "markdown", "id": "4", "metadata": {}, "source": [ "The following function can be used to compute the mean sound levels:" ] }, { "cell_type": "code", "execution_count": null, "id": "5", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "def mean_sound_db(values, coverage):\n", " # transform values, take average, transform result\n", " values = np.power(10, values)\n", " mean = np.average(values, weights=coverage)\n", " return np.log10(mean)" ] }, { "cell_type": "markdown", "id": "6", "metadata": {}, "source": [ "The user-defined function can now be used in the same way as a built-in summary operation. Unsurprisingly, we see that Honolulu is the loudest municipality in Hawaii." ] }, { "cell_type": "code", "execution_count": null, "id": "7", "metadata": {}, "outputs": [], "source": [ "results = exact_extract(sound_ds, municipalities, mean_sound_db, include_cols=['GEOID', 'NAME'], output='pandas')\n", "results.sort_values(by=['mean_sound_db'], ascending=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }